

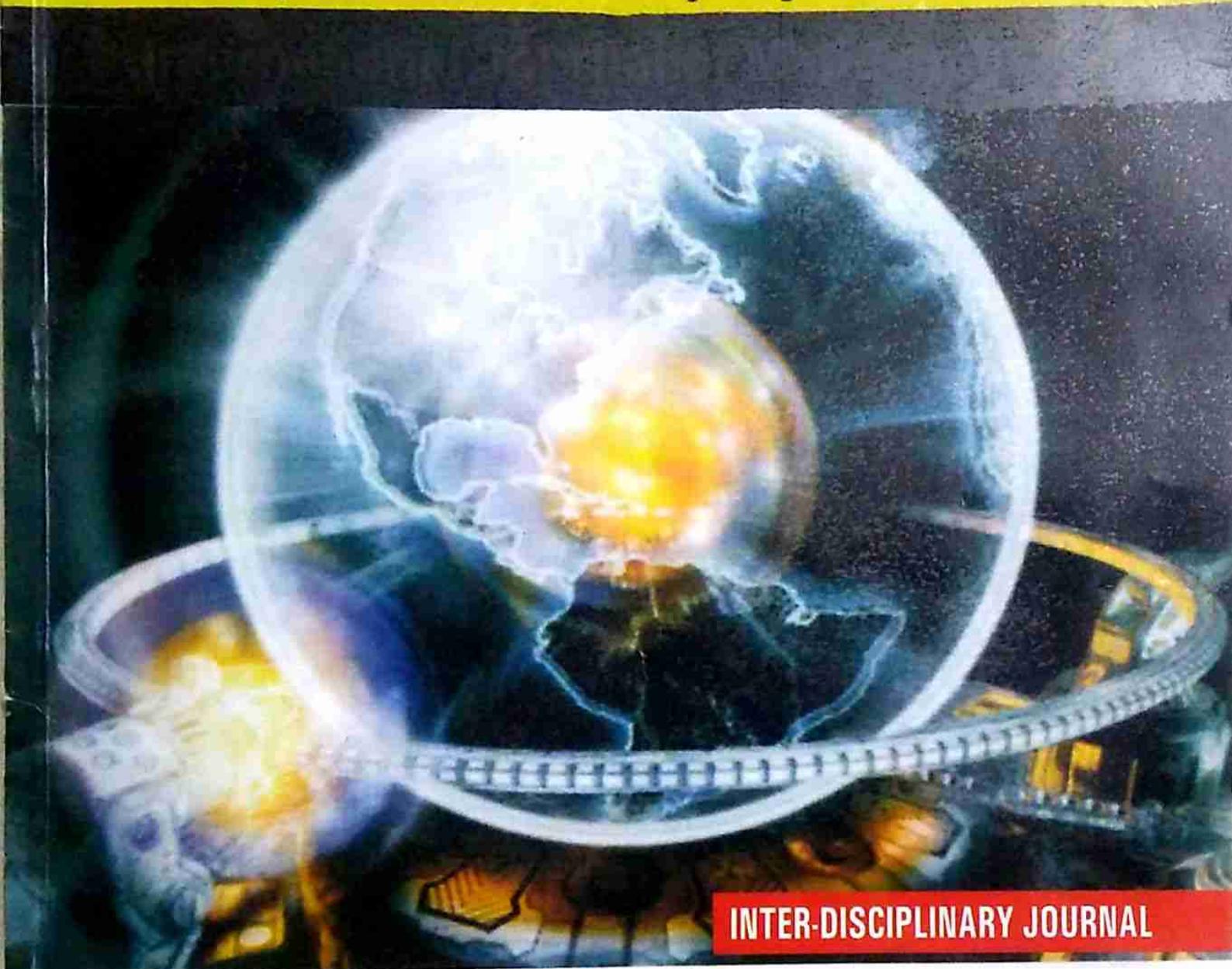
Regd. No. R.N. 52077/90
Volume 30, Number 9,10,11,12
September-December 2018
Peer Reviewed & Refereed Journal

Impact Factor = 2.98
JUSPS website
www.ultrascientist.org

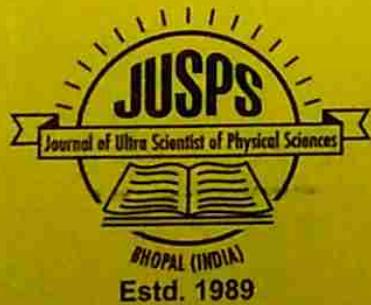
ISSN 2231 - 346X (Print)
ISSN 2319 - 8044 (Online)
Periodicity Monthly
Pages 353-412

Section A

Journal of Ultra Scientist of Physical Sciences



INTER-DISCIPLINARY JOURNAL



PUBLISHED BY
Dr. A.H. Ansari

HIG-D-18, Kakhashan Complex, Phase-II, BDA Colony,
Koh-e-Fiza, Bhopal - 462 001 (INDIA)
Email : jusps2001@gmail.com, chiefeditor@ultrascientist.org

JOURNAL OF ULTRA SCIENTIST OF PHYSICAL SCIENCES

Volume 30, Number 9,10,11,12(A) September-December

2018

CONTENTS

DHRUTI B. JOSHI and A. K. DESAI

Reduction of Certain Type of Parabolic Partial Differential Equations to Heat Equation. — 353

VARSHA SHRIVASTAVA, RIZWANA JAMAL and ANIL RAJPUT

Fixed Point Theorems and its Applications in Partial and Generalized Partial Cone Metric Spaces. — 362

NEELAM WASNIK and ANIL RAJPUT

Fixed Point Theorems for Set Valued Contraction Integral Type in Complete Metric Space. --- 369

HAMARI CHOUDHI A

Pie Generalizations-Locally Closed Sets. --- 377

K.P. SAMANTA and N.C. BISWAS

On trilateral generating functions of biorthogonal polynomials suggested by Laguerre polynomials. --- 384

K. GUNASEKARAN and R. KAVITHA

Geometry and Spectral Variation: the Operator Norm. --- 389

S. MALATHI and S. NITHYANANCHA JOTHI

On Pre-generalized c^* -homeomorphisms in topological spaces. --- 395

SUSHIL SHUKLA and SHIKHA TIWARI

* -Ricci Solitons on Kenmotsu Manifold. --- 401

SWASTI WAGH and D.K. WAGH

Modelling of Friedreich's Ataxia and other Genetic Disorders as Defective / Noisy Genetic Information Processing. --- 409

On Pre-generalized c^* -homeomorphisms in topological spaces

¹S. MALATHI and ²S. NITHYANANTHA JOTHI

¹Assistant Professor, Department of Mathematics, Wavoo Wajeeha Women's College of Arts and Science, Kayalpatnam, Tiruchendur-628215, Tamilnadu (India)

²Assistant Professor, Department of Mathematics, Aditanar College of Arts and Science, Tiruchendur-628215, Tamilnadu (India)

Corresponding of Author Email : ¹malathis2795@gmail.com, ²nithyananthajothi@gmail.com
<http://dx.doi.org/10.22147/jusps-A/301101>

Acceptance Date 10th October, 2018, Online Publication Date 2nd November, 2018

Abstract

The aim of this paper is to introduce the notion of pre-generalized c^* -homeomorphisms in topological spaces and study their basic properties.

Key words: pgc*-open maps, pgc*-continuous functions and pgc*- homeomorphisms.

1. Introduction

Norman Levine introduced the concept of semi-continuous function in 1963. In 1980, Jain introduced totally continuous functions. In 2011, S.S. Benchalli and Umadevi I Neeli introduced the concept of semi-totally continuous functions in topological spaces. H. Maki *et. al.* introduced and investigated generalized homeomorphisms and gc-homeomorphisms. R. Devi *et. al.* introduced and studied semi-generalized homeomorphisms and generalized semi-homeomorphisms. In this paper, we introduce pre-generalized c^* -homeomorphisms in topological spaces and study their basic properties.

Section 2 deals with the preliminary concepts. In section 3, pre-generalized c^* - homeomorphisms in topological spaces are introduced and their basic properties are studied.

2. Preliminaries :

Throughout this paper X denotes a topological space on which no separation axiom is assumed. For any subset A of X , $cl(A)$ denotes the closure of A , $int(A)$ denotes the interior of A , $pcl(A)$ denotes the pre-closure of A and $bcl(A)$ denotes the b-closure of A . Further $X \setminus A$ denotes the complement of A in X . The following definitions are very useful in the subsequent sections.

Definition: 2.1 A subset A of a topological space X is called

- i. a semi-open set⁴ if $A \subseteq \text{cl}(\text{int}(A))$ and a semi-closed set if $\text{int}(\text{cl}(A)) \subseteq A$.
- ii. a pre-open set¹² if $A \subseteq \text{int}(\text{cl}(A))$ and a pre-closed set if $\text{cl}(\text{int}(A)) \subseteq A$.

Definition: 2.2⁵ A subset A of a topological space X is said to be a c^* -open set if $\text{int}(\text{cl}(A)) \subseteq A \subseteq \text{cl}(\text{int}(A))$.

Definition: 2.3 A subset A of a topological space X is called

- i. a generalized pre-regular closed set (briefly, gpr-closed)² if $\text{pcl}(A) \subseteq H$ whenever $A \subseteq H$ and H is regular-open in X.
- ii. a weakly closed set (briefly, w-closed)¹⁵ (equivalently, \hat{g} -closed¹⁶) if $\text{cl}(A) \subseteq H$ whenever $A \subseteq H$ and H is semi-open in X.

The complements of the above mentioned closed sets are their respectively open sets.

Definition: 2.4⁵ A subset A of a topological space X is said to be a generalized c^* -closed set (briefly, gc^* -closed set) if $\text{cl}(A) \subseteq H$ whenever $A \subseteq H$ and H is c^* -open. The complement of the gc^* -closed set is gc^* -open⁶.

Definition: 2.5⁸ A subset A of a topological space X is said to be a pre-generalized c^* -closed set (briefly, pgc^* -closed set) if $\text{pcl}(A) \subseteq H$ whenever $A \subseteq H$ and H is c^* -open. The complement of the pgc^* -closed set is pgc^* -open⁹.

Definition: 2.6 A function $f: X \rightarrow Y$ is called

- i. totally-continuous³ if the inverse image of every open subset of Y is clopen in X.
- ii. strongly-continuous¹³ if the inverse image of every subset of Y is clopen subset of X.
- iii. semi-totally continuous¹ if the inverse image of every semi-open subset of Y is clopen in X.
- iv. gpr-continuous² if inverse image of every closed subset of Y is gpr-closed in X.
- v. w-continuous¹⁴ (equivalently, \hat{g} -continuous¹⁶) if inverse image of every closed subset of Y is w-closed in X.

Definition: 2.7¹⁶ A function $f: X \rightarrow Y$ is said to be a \hat{g} -open map if $f(U)$ is \hat{g} -open in Y for every open set U of X.

Definition: 2.8⁶ A function $f: X \rightarrow Y$ is said to be a generalized c^* -open (briefly, gc^* -open) map if $f(U)$ is gc^* -open in Y for every open set U of X.

Definition: 2.9⁹ A function $f: X \rightarrow Y$ is said to be a pre-generalized c^* -open (briefly, pgc^* -open) map if $f(U)$ is pgc^* -open in Y for every open set U of X.

Definition: 2.10⁷ Let X and Y be two topological spaces. A function $f: X \rightarrow Y$ is called a generalized c^* -continuous (briefly, gc^* -continuous) function if $f^{-1}(V)$ is gc^* -closed in X for every closed set V of Y.

Definition: 2.11¹⁰ Let X and Y be two topological spaces. A function $f: X \rightarrow Y$ is called a pre-generalized c^* -continuous (briefly, pgc^* -continuous) function if $f^{-1}(V)$ is pgc^* -closed in X for every closed set V of Y.

Definition: 2.12¹⁶ A bijective function $f: X \rightarrow Y$ is called a \hat{g} -homeomorphism if f is both \hat{g} -continuous and \hat{g} -open.

Definition: 2.13¹¹ A bijective function $f: X \rightarrow Y$ is said to be generalized c^* -homeomorphism (briefly, gc^* -homeomorphism) if f is both gc^* -continuous and gc^* -open map.

3. Pre-generalized c^* -homeomorphisms

In this section, we introduce pre-generalized c^* -homeomorphisms and study their basic properties.

Definition: 3.1 A bijective function $f: X \rightarrow Y$ is said to be pre-generalized c^* -homeomorphism (briefly, pgc^* -homeomorphism) if f is both pgc^* -continuous and pgc^* -open map.

Example: 3.2 Let $X = \{a, b, c\}$ and $Y = \{1, 2, 3\}$. Then, clearly $\tau = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}$ is a topology on X and $\sigma = \{\emptyset, \{1\}, Y\}$ is a topology on Y . Define $f: X \rightarrow Y$ by $f(a) = 1, f(b) = 3, f(c) = 2$. Then f is both pgc^* -continuous and pgc^* -open map. Therefore, f is a pgc^* -homeomorphism.

Proposition: 3.3 Let X, Y be topological spaces. Then every homeomorphism is a pgc^* -homeomorphism.

Proof: Let $f: X \rightarrow Y$ be a homeomorphism. Then f is both continuous and open map. By Proposition 3.4[10], f is pgc^* -continuous and by Proposition 4.4[9], f is a pgc^* -open map. Therefore, f is pgc^* -homeomorphism.

The converse of Proposition 3.3 need not be true which can be verified from the following example.

Example: 3.4 In Example 3.2, the image of the open set $\{b\}$ in X is $\{3\}$, which is not open in Y . Therefore, f is not homeomorphism.

Proposition: 3.5 Let X be a topological space. Then every \hat{g} -homeomorphism is a pgc^* -homeomorphism.

Proof: Let $f: X \rightarrow Y$ be a \hat{g} -homeomorphism. Then f is both \hat{g} -continuous and \hat{g} -open map. By Proposition 3.4 [10], f is pgc^* -continuous. Also, by Proposition 4.6 [9], f is a pgc^* -open map. Therefore, f is pgc^* -homeomorphism.

The converse of Proposition 3.5 need not be true as seen from the following example.

Example: 3.6 In Example 3.2, the function $f: X \rightarrow Y$ is a pgc^* -homeomorphism. But the inverse image of the closed set $\{2, 3\}$ in Y under f is $\{b, c\}$, which is not a \hat{g} -closed set in X . Therefore, f is not a \hat{g} -continuous function. Hence f is not a \hat{g} -homeomorphism.

Proposition: 3.7 Let X be a topological space. Then every gc^* -homeomorphism is a pgc^* -homeomorphism.

Proof: Let $f: X \rightarrow Y$ be a gc^* -homeomorphism. Then f is both gc^* -continuous and gc^* -open map. By Proposition 3.4¹⁰, f is pgc^* -continuous. Since every gc^* -open map is pgc^* -open map, we have f is a pgc^* -open map. Therefore, f is a pgc^* -homeomorphism.

The following example shows that the converse of Proposition 3.7 need not be true.

Example: 3.8 Let $X = \{a, b, c, d, e\}$ and $Y = \{1, 2, 3, 4, 5\}$. Then, clearly $\tau = \{\emptyset, \{a, b\}, \{c, d\}, \{a, b, c, d\}, X\}$ is a topology on X and $\sigma = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, \{1, 2, 3\}, \{1, 2, 3, 4\}, \{1, 2, 3, 5\}, Y\}$ is a topology on Y . Define $f: X \rightarrow Y$ by $f(a) = 1, f(b) = 2, f(c) = 3, f(d) = 4, f(e) = 5$. Then f is a pgc^* -homeomorphism. But f is not a gc^* -homeomorphism, since the inverse image of the closed set $\{4\}$ in Y under f is $\{d\}$, which is not a gc^* -closed set in X .

The composition of two pgc^* -homeomorphisms need not be a pgc^* -homeomorphism. For example, let $X = \{a, b, c\}$, $Y = \{1, 2, 3\}$ and $Z = \{p, q, r\}$. Then, clearly $\tau = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}$ is a topology on X , $\sigma = \{\emptyset, \{1\}, Y\}$ is a topology on Y and $\eta = \{\emptyset, \{p\}, \{p, q\}, Z\}$ is a topology on Z . Define $f: X \rightarrow Y$ by $f(a) = 1, f(b) = 3, f(c) = 2$ and define $g: Y \rightarrow Z$ by $g(1) = q, g(2) = p, g(3) = r$. Then f and g are pgc^* -homeomorphisms. Consider the closed set $\{r\}$ in Z . Then $(g \circ f)^{-1}(\{r\}) = f^{-1}(g^{-1}(\{r\})) = f^{-1}(\{3\}) = \{b\}$, which is not a pgc^* -closed set in X . Therefore, $g \circ f$ is not a pgc^* -homeomorphism.

Proposition: 3.9 Let X, Y, Z be topological spaces. If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are homeomorphisms, then $g \circ f: X \rightarrow Z$ is a pgc^* -homeomorphism.

Proof: Assume that $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are homeomorphisms. Then f and g are both continuous and

open maps. By Proposition 3.10¹⁰, $g \circ f$ is a pgc^* -continuous function. Also, by Proposition 4.9⁹, $g \circ f$ is a pgc^* -open map. Hence $g \circ f$ is a pgc^* -homeomorphism.

Proposition: 3.10 Let X, Y be topological spaces. If $f: X \rightarrow Y$ is strongly continuous and image of every subset of X is a clopen subset of Y , then f is pgc^* -homeomorphism.

Proof: Let $f: X \rightarrow Y$ be a strongly continuous function. Then by Proposition 3.4¹⁰, f is a pgc^* -continuous function. Now, let U be an open set in X . By our assumption, $f(U)$ is a clopen in Y . By Proposition 3.7⁶, $f(U)$ is gc^* -open in Y . This implies, $f(U)$ is pgc^* -open in Y . Therefore, f is a pgc^* -open map. Hence f is a pgc^* -homeomorphism.

Proposition: 3.11 Let X, Y be topological spaces. If $f: X \rightarrow Y$ is a semi-totally continuous function and image of every semi-open subset of X is clopen in Y , then f is pgc^* -homeomorphism.

Proof: Let $f: X \rightarrow Y$ be a semi-totally continuous function. Then by Proposition 3.4¹⁰, f is a pgc^* -continuous function. Now, let U be an open set in X . Then U is semi-open in X . By our assumption, $f(U)$ is a clopen in Y . By Proposition 3.7⁶, $f(U)$ is gc^* -open in Y . This implies, $f(U)$ is pgc^* -open in Y . Therefore, f is a pgc^* -open map. Hence f is a pgc^* -homeomorphism.

Proposition: 3.12 Let X, Y be topological spaces. If $f: X \rightarrow Y$ is a totally continuous function and image of every open subset of X is clopen in Y , then f is pgc^* -homeomorphism.

Proof: Let $f: X \rightarrow Y$ be a totally continuous function. Then by Proposition 3.4¹⁰, f is a pgc^* -continuous function. Now, let U be an open set in X . By our assumption, $f(U)$ is a clopen in Y . By Proposition 3.7⁶, $f(U)$ is gc^* -open in Y . This implies, $f(U)$ is pgc^* -open in Y . Therefore, f is a pgc^* -open map. Hence f is a pgc^* -homeomorphism.

Proposition: 3.13 Let X, Y be topological spaces. If $f: X \rightarrow Y$ is a pgc^* -homeomorphism, then f is gpr-continuous and image of every closed subset of X is gpr-closed in Y .

Proof: Assume that f is a pgc^* -homeomorphism. Then f is both pgc^* -continuous and pgc^* -open map. Then by Proposition 3.6¹⁰, f is gpr-continuous. Now, let V be a closed set in X . Since f is a pgc^* -open map, by Proposition 4.3⁹, $f(V)$ is a pgc^* -closed set in Y . Therefore, by Proposition 3.15⁸, $f(V)$ is gpr-closed in X . Hence the proof.

Proposition: 3.14 Let X, Y be topological spaces. A bijective function $f: X \rightarrow Y$ is a pgc^* -homeomorphism if and only if f is pgc^* -continuous and $f^{-1}: Y \rightarrow X$ is pgc^* -continuous.

Proof: Assume that f is a pgc^* -homeomorphism. Then f is pgc^* -continuous and pgc^* -open map. By Proposition 3.8¹⁰, $f^{-1}: Y \rightarrow X$ is a pgc^* -continuous function. Conversely, assume that f is pgc^* -continuous and f^{-1} is pgc^* -continuous. Then by Proposition 3.8¹⁰, $f: X \rightarrow Y$ is a pgc^* -open map. Hence f is a pgc^* -homeomorphism.

Proposition: 3.15 Let X, Y and Z be topological spaces. If $f: X \rightarrow Y$ is pgc^* -homeomorphism and $g: Y \rightarrow Z$ is totally-continuous and if $g(U)$ is pgc^* -open for every pgc^* -open set U in Y , then $g \circ f: X \rightarrow Z$ is pgc^* -homeomorphism.

Proof: Let V be an open set in Z . Then $g^{-1}(V)$ is clopen in Y . This implies, $g^{-1}(V)$ is open in Y . Since f is pgc^* -continuous, we have $f^{-1}(g^{-1}(V))$ is pgc^* -open. That is, $(g \circ f)^{-1}(V)$ is pgc^* -open in X . Therefore, $g \circ f$ is pgc^* -continuous. Let U be an open set in X . Then $f(U)$ is pgc^* -open in Y . This implies, $g(f(U))$ is pgc^* -open in Z . That is, $(g \circ f)(U)$ is pgc^* -open in Z . Therefore, $g \circ f$ is pgc^* -open map. Hence $g \circ f$ is pgc^* -homeomorphism.

Proposition: 3.16 Let X, Y and Z be topological spaces. If $f: X \rightarrow Y$ is pgc^* -homeomorphism and $g: Y \rightarrow Z$ is semi-totally continuous and if $g(U)$ is pgc^* -open for every pgc^* -open set U in Y , then $g \circ f: X \rightarrow Z$ is pgc^* -homeomorphism.

Proof: Let V be an open set in Z . Then V is semi-open in Z . This implies, $g^{-1}(V)$ is clopen in Y . Since f is pgc^* -continuous, we have $f^{-1}(g^{-1}(V))$ is pgc^* -open. That is, $(g \circ f)^{-1}(V)$ is pgc^* -open in X . Therefore, $g \circ f$ is pgc^* -continuous. Let U be an open set in X . Then $f(U)$ is pgc^* -open in Y . This implies, $g(f(U))$ is pgc^* -open in Z . That is, $(g \circ f)(U)$ is pgc^* -open in Z . Therefore, $g \circ f$ is pgc^* -open map. Hence $g \circ f$ is pgc^* -homeomorphism.

Proposition: 3.17 Let X, Y and Z be topological spaces. If $f: X \rightarrow Y$ is both open and strongly-continuous and $g: Y \rightarrow Z$ is pgc^* -homeomorphism, then $g \circ f: X \rightarrow Z$ is pgc^* -homeomorphism.

Proof: Let V be an open set in Z . Then $g^{-1}(V)$ is pgc^* -open in Y . Since f is strongly-continuous, we have $f^{-1}(g^{-1}(V))$ is clopen in X . That is, $(g \circ f)^{-1}(V)$ is pgc^* -open in X . Therefore, $g \circ f$ is pgc^* -continuous. Let U be an open set in X . Then $f(U)$ is open in Y . This implies, $g(f(U))$ is pgc^* -open in Z . That is, $(g \circ f)(U)$ is pgc^* -open in Z . Therefore, $g \circ f$ is pgc^* -open map. Hence $g \circ f$ is pgc^* -homeomorphism.

Conclusion

In this paper we have introduced pgc^* -homeomorphisms in topological spaces. Also, we have studied the relationship between pgc^* -homeomorphism and other continuous functions already exist.

References

1. S.S. Benchalli and U. I Neeli, Semi-totally Continuous function in topological spaces, *Inter. Math. Forum*, 6, 10, 479-492 (2011).
2. Y. Gnanambal, On generalized pre regular closed sets in topological spaces, *Indian J. Pure Appl. Math.*, 28, 351-360 (1997).
3. R.C. Jain, The role of regularly open sets in general topological spaces, Ph.D. thesis, Meerut University, Institute of advanced studies, Meerut-India, (1980).
4. N. Levine, Semi-open sets and semi-continuity in topological space, *Amer. Math. Monthly*, 70, 39-41 (1963).
5. S. Malathi and S. Nithyanantha Jothi, On c^* -open sets and generalized c^* -closed sets in topological spaces, *Acta ciencia indica*, Vol. XLIII M, No.2, 125, 125-133 (2017).
6. S. Malathi and S. Nithyanantha Jothi, On generalized c^* -open sets and generalized c^* -open maps in topological spaces, *Int. J. Mathematics And its Applications*, Vol. 5, issue 4-B, 121-127 (2017).
7. S. Malathi and S. Nithyanantha Jothi, On generalized c^* -continuous functions and generalized c^* -irresolute functions in topological spaces, *Turkish Journal of Analysis and Number Theory*, (Accepted).
8. S. Malathi and S. Nithyanantha Jothi, On pre-generalized c^* -closed sets in topological spaces, *Journal of Computer and Mathematical Sciences* Vol. 8 (12), 720-726 (2017).
9. S. Malathi and S. Nithyanantha Jothi, On pre-generalized c^* -open sets and pre-generalized c^* -open maps in topological spaces, *Int. J. Mathematical Archive*, Vol. 8 (12), 66-70 (2017).
10. S. Malathi and S. Nithyanantha Jothi, On pre-generalized c^* -continuous functions and pre-generalized c^* -

irresolute functions in topological spaces, *Mathematical Sciences International Research Journal*, Vol. 7, Spl issue 4, 17-22 (2018).

11. S. Malathi and S. Nithyanantha Jothi, On generalized c^* -neighbourhoods and generalized c^* -homeomorphisms in topological spaces, *Proceedings of National Conference on Innovation in Mathematics (NCIM-2018)*, 87-95.
12. A.S. Mashhour, M.E. Monsef and S.N. El-Deep, On precontinuous mapping and weak precontinuous mapping, *Proc. Math. Phy. Soc. Egypt*, 53, 47-53 (1982).
13. M. Stone, Application of the theory of Boolean rings to general topology, *Trans. Amer. Math. Soc.*, 41, 374-481 (1937).
14. P. Sundaram and M. Sheik John, Weakly closed sets and weak continuous functions in topological spaces, *Proc. 82nd Indian Sci. cong.*, 49, 50-58 (1995).
15. P. Sundaram, M. Sheik John, On w -closed sets in topology, *Acta ciencia indica*, 4, 389-392 (2000).
16. M.K.R.S. Veera kumar, On \hat{g} -closed sets in topological spaces, *Bull. Allah. Math. Soc.*, 18, 99-112 (2003).