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Abstract

The aim of this paper is to introduce the notion of pre-generalized c*-homeomorphisms in topological
spaces and study their basic properties.

Key words: pgc®-open maps, pgc*-continuous functions and pgc®*- homeomorphisms.

1. Introduction

Norman Levine introduced the concept of semi-continuous function in 1963. In 1980, Jain introduced
wially continuous functions. In 2011, S.S. Benchalli and Umadevi | Necli introduced the concept of semi-
totally continuous functions in topological spaces. H. Maki er. al. introduced and investigated generalized
homeomorphisms and gc-homeomorphisms. R. Devi er. al. introduced and studied semi-generalized
homeomorphisms and generalized semi-homeomorphisms. In this paper, we introduce pre-generalized
c*-homeomorphisms in topological spaces and study their basic properties.

Section 2 deals with the preliminary concepts. In section 3, pre-generalized ¢*- homeomorphisms in
topological spaces are introduced and their basic properties are studied.

2. Preliminaries :

Throughout this paper X denotes a topological space on which no separation axiom is assumed. For
any subset A of X, cl(A) denotes the closure of A, int(A) denotes the interior of A, pcl(A) denotes the pre-
closure of A and bel(A) denotes the b-closure of A. Further X\A denotes the complement of A in X. The
following definitions are very useful in the subsequent sections.

This 1 an open access article under the CC BY-NC-SA license (https://ctreativecommons.org/licenses/by-nc-sa’4.0)
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Definition: 2.1 A subset A of a topological space X is cal!ed.
i a semi-open set* if Accl(int(A)) and a semi-closed set if int(cl(A))cA.

ii. a pre-open set'? if Acint(cl(A)) and a pre-closed set if cl(int(A))cA.

Definition: 2.2° A subset A of a topological space X is said to be a c*.qpep set if
int(cl(A))cAccl(int(A)). )
Definition: 2.3 A subset A of a topological space X 1szcalled
L ageneralized pre-regular closed set (briefly, gpr-closed)” if pcl(A)cH whenever AcH and H jg regular.
open in X.
ii. aweakly closed set (briefly, w-closed)'* (equivalently, § -closed '°) if cI(A)=H whenever AcH a5 His
semi-open in X.
The complements of the above mentioned closed sets are their respectively open sets,

Definition: 2.4° A subset A of a topological space X is said to be a generalized c*-closed set (briefly,
gc*-closed set) if cl(A)cH whenever AcH and H is c*-open. The complement of the gc*-closed set is ge*.
open ©.

Definition: 2.5° A subset A of a topological space X is said to be a pre-generalized c*-closed set (briefly,
pgc¥-closed set) if pcl(A)cH whenever AcH and H is c*-open. The complement of the pgc*-closed set ig
pgc*-open’.

Definition: 2.6 A function f: X =Y is called
i totally-continuous® if the inverse image of every open subset of Y is clopen in X.

ii.  strongly-continuous'? if the inverse image of every subset of Y is clopen subset of X.
iii. semi-totally continuous' if the inverse image of every semi- open subset of Y is clopen in X,

iv. gpr-continuous? if inverse image of every closed subset of Y is gpr-closed in X.

v.  w-continuous" (equivalently, & -continuous'®) if inverse image of every closed subset of Y is w-closed in X.

Definition: 2.7'° A function f: X Y is said to be a § -open map if f(U) is & -open in Y for every open
set U of X.

Definition: 2.8° A function f: X —Y is said to be a generalized c*-open (briefly, gc*-open) map if f(U)
is gc*-open in Y for every open set U of X.

Definition: 2.9° A function f: X—Y is said to be a pre-generalized c*-open (briefly, pgc*-open) map if
f(U) is pgc*-open in Y for every open set U of X,

Definition: 2.10" Let X and Y be two topological spaces. A function f: X —Y is called a generalized
c*-continuous (briefly, gc*-continuous) function if f V) is ge*-closed in X for every closed set V of Y.

Definition: 2.11'° Let X and Y be two topological spaces. A function f: X —Y is called a pre-generalized
c*-continuous (briefly, pge*-continuous) function if f (V) is pge*-closed in X for every closed set V of Y.

Definition: 2.]12'6 A bijective function f: X —Y is calleda g -homeomorphism if fis both & -continuous
and §-open.

Deﬁnitiojrz: 2.13" Abijective function f: XY is said to be generalized c*-homeomorphism (briefly;
gc*-homeomorphism) if f is both gc*-continuous and gc*-open map.
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3. Pre-generalized c*-homeomorphis ms
In this section, we | & pre-general;

» We Introduce pre-generalized ¢*-homeomarphisms and study their basic properties.

Definition: 3.1 A bijective function £ -,y Is

i, said to be pre-generalized ¢*-home hi iefly
ot HODEMIHST) £ s bodh o pre-generalized ¢*-homeomorphism (briefly,

. -continuous and pgc¥-open map.
Example: 3.2 Let X={ab,c} and Y={1,2,3). Then, clearly 718, b} {c}. {b.c} X} ‘s atopology on X and

=14, {1}.Y} isatopology on Y. Define f: X — Y by fla)=1, f(b)=3, f(c)=2. Then f is both pge*-continuous and
pgc*-open map. Therefore, fis a pec*-homeomaorphism.

Proposition: 3.3 Let X.Y be topological spaces.

Proof: Let f: XY be a homeomorphism,
3.4[10], f is pgc*-continuous and by P
homeomorphism,

Then every homeomorphism is a pgc*-homeomorphism.
Then f is both continuous and open map. By Proposition
roposition 4.4[9], f is a pgc*-open map. Therefore, f is pgc*-

The converse of Proposition 3.3 need not be true which can be verified from the following example.

Exc{mple.' 3.4 In Example 3.2, the image of the open set {by in X is {3}, which is not open in Y.
Therefore, f'is not homeomorphism.

Proposition: 3.5 Let X be a topological space. Then every £ -homeomorphism is a pgc*-
homeomorphism.
Proof: Let f: X— Y be a @ -homeomorphism. Then f is both ¢ -continuous and & -open map. By

Proposition 3.4 [10], fis pgc*-continuous. Also, by Proposition 4.6 [9], fis a pgc*-open map. Therefore, f is
pgc*-homeomorphism.

The converse of Proposition 3.5 need not be true as seen from the following example.
Example: 3.6 In Example 3.2, the function f: X—Y isa pgc*-homeomorphism. But the inverse image of

the closed set {2,3} in Y under fis {b,c}, which is not a & -closed set in X. Therefore, f is not a @ -continuous

function. Hence fis not a & -homeomorphism.

Proposition: 3.7 Let X be a topological space. Then every gc*-homeomorphism is a pgc*-
homeomorphism.

Proof: Let f: X — Y be a gc*-homeomorphism. Then fis both ge*-continuous and gc*-open map. By
Proposition 3.4 10 fis pgc*-continuous. Since every ge*-open map is pgc*-open map, we have fis a pgc*-open
map. Therefore, fis a pgc*-homeomorphism.

The following example shows that the converse the Proposition 3.7 need not be true.

Example: 3.8 Let X={a,b,c,d,e} and Y={1,2,3.4,5}. Then, clearly 7={¢,{a,b},{c,d},{a,b,c,d}, X} isa
topology on X and o={¢, {1},12},{1,2},{1,2,3},{1,2,3,4}{1,2,3,5},Y} isatopology on Y. Define f: X—Y by fla)=1,
f(h)=2, f(c)=3, f(d)=4, f(e)=5. Then fis a pgc*-homeomorphism. But f'is not a gc*-homeomorphism, since the
inverse image of the closed set {4} in Y under fis {d}, which is not a gc*-closed set in X.

The composition of two pgc*-homeomorphisms need not be a pge*-homeomorphism. For example, let
X={a,b,c}, Y={1,2,3} and Z={p,q,r}. Then, clearly 1={¢,{b},{c},{b,c},X} isatopology on X, 6={¢,{1},Y} isa
topology on Y and n={¢,{p},{p.q},Z} is atopology on Z. Define f: X =Y by f(a)=1, f(b)=3, f(c)=2 and define
g: Y-Z by g(1)=q, g(2)=p, g(3)=r. Then f and g are pgc*-homeomorphisms. Consider the closed set {r} in Z.
Then (gof) ! ({r})=f (g "'({r}))= £ "'({3})={b}, which is not a pgc*-closed set in X. Therefore, gofis not a pge*-
homeomorphism. .

Proposition: 3.9 Let X,Y,Z be topological spaces. If f: XY and g : Y — Z are homeomorphisms, then
gf: X—»Z is a pgc*-homeomorphism, .

Proof: Assume that f: X—Y and g : Y—Z are homeomorphisms. Then fand g are both continuous and



108 S. Malathi, et al., JUSPS-A Vo, 30(11), 0] )

_ ; iti 9 :
open maps. By Proposition 3.10 1%, gof is a pgc*-continuous function. Also, by Proposition4.9? oof & 2 pges.

open map. Hence gof is a pge*-homeomorphism. _ . _
Proposition: 3.10 Let X,Y be topological spaces. Iff: X—=Y is strongly continuous and image °fevery
subsct of X is a clopen subset of Y, then fis pgc*-homeomorphism. - "
Proof: Let f : X—Y be a strongly continuous function. Then by Proposition 3.4 0 ¢ Piics.
continuous function. Now, let U be a open set in X. By our assumption, f(U)isaclopenin Y. By PFOPOSition
. : *_
3.7%, f(U) is ge*-open in Y. This implies, f(U) is pge*-open in Y. Therefore, f is a pge*-open map. Hence ¢ isa

pge*-homeomorphism. ) ) .
Proposition: 3.11 Let X,Y be topological spaces. If f: XY is a semi-totally continuous function 4y,

image of every semi-open subset of X is clopen in Y, then f is pgc*-homeomorphism.

Proof: Let f: X—Y be a semi-totally continuous function. Then by Proposition 3.4 1% fis Pack.
continuous function. Now, let U be a open set in X. Then U is semi-open in X. By our assumption, f(U) is 4
clopen in Y. By Proposition 3.7 ¢, f{U) is gc*-open in Y. This implies, f(U) is pgc*-open in Y. Therefore, fis 5 Pgc*.
open map. Hence fis a pgc*-homeomorphism.

Proposition: 3.12 Let X,Y be topological spaces. If f: X—'Y is a totally continuous function ang image
of every open subset of X is clopen in Y, then f is pgc*-homeomorphism.

Proof: Let f: X—Y be a totally continuous function. Then by Proposition 3.4 '°, fis a Pgc*-continugysg
function. Now, let U be a open set in X. By our assumption, f(U) is a clopen in Y. By Proposition 3.7 ¢, f{u) s gct.
open in'Y. This implies, f{(U) is pgc*-open in Y. Therefore, f'is a pgc*-open map. Hence fis a pgc*—homeomorphism_

Proposition: 3.13 Let X,Y be topological spaces. [ff: X—Y is a pgc*-homeomorphism, then fis gpr-
continuous and image of every closed subset of X is gpr-closed in Y.

Proof: Assume that fis a pgc*-homeomorphism. Then fis both pge*-continuous and pgc*-open map.
Then by Proposition 3.6 '°, fis gpr-continuous. Now, let V be a closed set in X. Since fis a pgc*-open map, by
Proposition 4.3 %, f(V) is a pgc*-closed set in Y. Therefore, by Proposition 3.15 & f(V) is gpr-closed in X. Hence
the proof.

Proposition: 3.14 Let X,Y be a topological space. A bijective function f: X—Y isa pgc*-homeomorphism
if and only if f'is pgc*-continuous and f ' : Y —X is pgc*-continuous.

Progf: Assume that f is a pgc*-homeomorphism. Then f is pgc*-continuous and pgc*-open map. By
Proposition 3.8 '°, £ : Y—» X is a pgc*-continuous function. Conversely, assume that f is pgc*-continuous and
f ! is pgc*-continuous. Then by Proposition 3.8 '°, f : X —Y is a pgc*-open map. Hence f is a pge*-
homeomorphism.,

Proposition: 3.15 Let X,Y and Z be topological spaces. If f: X =Y is pgc*-homeomorphismand g :
Y—> Zis totally-continuous and if g(U) is pgc*-open for every pgc*-open set U in Y, then gof : X —Z is pgc*-
homeomorphism.

Proof: Let V be an open set in Z. Then g (V) is clopen in Y. This implies, g”!(V) is openin Y. Since fis
pgc*-continuous, we have f*(g1(V)) is pgc*-open. That is, (gof) (V) is pgc*-open in X. Therefore, gof is pgc*-
continuous. Let U be an open set in X. Then f(U) is pgc*-open in Y. This implies, g(f(U)) is pgc*-open in Z. That
is, (gof)(U) is pge*-open in Z. Therefore, gof is pgc*-open map. Hence gof is pgc*-homeomorphism.
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Proposition: 3.16 Let X.Y and Z be topological spaces. If f : X—Y is pec*-homeomorphism and g :
y—Z is semi-totally continuous and if g(U) is pge*-open for every pge*-open set U in Y, then gof : X—Z is
pc*-homeomorphism.

Proof: Let VbeanopensetinZ. Then Vis semi-open in Z. This implies, g7/ (V) isclopen in Y. Since f is
pgc*-continuous, we have £~ (g™'(V)) is pge*-open. That is, (g+f) (V) is pgc*-open in X. Therefore, gof is pge*-
continuous. Let U be an open setin X. Then f(U) is pge*-open in Y. This implies, g(f(U)) is pge*-open in Z. That
is, (g°0(U) is pge*-open in Z. Therefore, gof is pgc*-open map. Hence g:f is pgc*-homeomorphism.

Proposition: 3.17 Let X,Y and Z be topological spaces. If f: X—Y is both open and strongly-continuous
and g : Y—>Z is pge*-homeomorphism, then gof : X—Z is pgc*-homeomorphism.

Proof: Let V be an opensct in Z. Then g(V) is pgc*-open in Y. Since fis strongly-continuous, we have
f!(g"'(V)) is clopen in X. That is, (gof)'(V) is pgc*-open in X. Therefore, g-f is pgc*-continuous. Let U be an
open et in X. Then f{U) is open in Y. This implies, g(f(U)) is pgc*-open in Z. That is, (g=f)(U) is pgc*-open in Z.
Therefore, gof is pgc*-open map. Hence gof is pgc*-h omeomorphism.

P

Conclusion

In this paper we have introduced pgc*-homeomorphisms in topological spaces. Also, we have studied
the relationship between pge*-homeomorphism and other continuous functions already exist.
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